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SUMMARY

The least-squares mixed ®nite element method is concisely described and supporting error estimates and
computational results for linear elliptic (steady diffusion) problems are brie¯y summarized. The extension to the
stationary Navier±Stokes problems for Newtonian, generalized Newtonian and viscoelastic ¯uids is then
considered. Results of numerical studies are presented for the driven cavity problem and for a stick±slip problem.
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1. INTRODUCTION

Least-squares schemes for approximating the solution to differential equations were proposed some

time ago as a particular variant of the method of weighted residuals (see, e.g. References 1 and 2).

The basic idea is quite straightforward. Given a trial solution expansion with unknown coef®cients

and satisfying the boundary conditions, construct the corresponding residual for the differential

equation. Next, minimize the integral mean square residual to generate an algebraic system. Finally,

solve this algebraic system to determine the coef®cients and hence the approximation. This approach

is appealing because the resulting algebraic system has symmetric structure even for non-self-adjoint

PDEs such as those frequently encountered in ¯uid ¯ow and transport. The method is also less

sensitive to changes in PDE type and for this reason was investigated in exploratory ®nite element

studies of mixed-type problems for the Tricomi equation and subsonic=transonic ¯ows.3,4 The main

detractions of this method are also clear from these studiesÐsince the least-squares functional is

constructed for the second-order operator, second-order derivatives should be square-integrable and

this imposes increased smoothness requirements on the ®nite element spaces. For example, C1 bases

are suf®cient and were used in the study cited above.3 This implies a high-p approximation scheme

which will generate accurate approximations and is topical in view of the current interest in high-p

methods. However, it is still generally regarded as too restrictive and particularly unappealing in 3D.

Another problem is the degradation in conditioning as compared with Galerkin ®nite element
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systems. Applying the least-squares approach directly to the operator is somewhat analogous to

applying least-squares to an algebraic system, thereby generating the symmetric normal system form.

The conditioning of the system is also squared and the iterative convergence will be degraded. For

these reasons the least-squares approach has received relatively little attention until recently.

The above continuity requirements can be relaxed by introducing new ¯ux variables to recast the

higher-order problem as a lower-order system. For example, a scalar potential equation for u would

be replaced by a ®rst-order system for u and ¯ux s. Now the least-squares residual functional can be

formed for the system and the approximations (uh, sh) to (u; s) can be determined in the manner

suggested above. In essence, we have thereby constructed a mixed least-squares ®nite element

formulation analogous to the corresponding mixed Galerkin formulation. There are, however, two

striking distinctions: (i) the least-squares system is symmetric positive whereas the Galerkin system is

not; (ii) the ®nite element bases for the least-squares scheme are not subject to the restrictive inf-sup

conditions of the Galerkin mixed methods.5 Of course, as with other mixed methods, additional ¯ux

variables are introduced. The previous conditioning problems are alleviated, but the system size is

still large owing to the additional ¯ux variables. Preconditioning is still desirable and multigrid

schemes have been shown to be effective (see Reference 6). Another strategy that can be interpreted

as a preconditioning is to introduce a Sobolev gradient to accelerate steepest descent iteration.7,8

In the present work we focus on ¯uid ¯ow and transport problems where mixed methods are

gaining popularity and least-squares shows considerable promise. In particular, we develop the

method for stationary elliptic problems associated with convection±diffusion and viscous Newtonian

or non-Newtonian ¯ows. However, we also include a number of reference citations to our own work

and that of others dealing with the transient least-squares problem. We begin in Section 2 with a

simple 1D example to introduce the methodology and state the main estimates. Then the extension to

two- and three-dimensional potential problems is presented and some interesting theoretical and

computational results are summarized. A brief description and results using a speci®c preconditioning

strategy are included. Also, error estimates in subdomains are given. In Section 3 we describe the

residual-based error estimator, which is exact on each ®nite element in the norm de®ned by the

bilinear form. Next, in Section 4 the extension of the least-squares method to stationary viscous ¯ows

governed by the Stokes and Navier±Stokes equations is given, together with numerical results.

Results for both h- and p-type ®nite elements have been computed. Finally, we consider the least-

squares formulation for viscoelastic problems.

2. STEADY POTENTIAL FLOW AND TRANSPORT

The main ideas can be most conveniently introduced by means of a two-point boundary value

problem for steady 1D transport. Accordingly, let us consider

ÿ�au0�0 � cu � f ; 04 x4 1; �1�

with u(0)� 0 and a(1)u0(1)� 0. Introducing the ¯ux s�ÿau0, we obtain the ®rst-order system

s0 � cu � f ; s� au0 � 0; �2�

with u(0)� 0 and s(1)� 0.

The corresponding least-squares functional is

I �u; s� �
�1

0

��s0 � cuÿ f �2 � �s� au0�2�dx �3�
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and taking variations we get the weak statement: ®nd (u, s) satisfying the boundary conditions and

such that

a�u; s; v; q� � � f ; q0 � cv�; �4�
where ( f, q0 � cv) is the standard L2 inner product and the bilinear form

a�u; s; v; q� �
�1

0

��s0 � cu��q0 � cv� � �s� au0��q� av0��dx �5�

is coercive in the associated space.

Existence of a unique solution then follows from the Lax±Milgram lemma and we have proven

global estimates of the form9

kuÿ uhkm � ksÿ shkm 4Chs�1ÿm�kuks�1 � ksks�1�; m � 0; 1; �6�
for s�min(k, r) and C0 ®nite element spaces of degree k and r for uh and sh, respectively. Improved

estimates have been obtained for the case where k 6� r and superconvergence estimates have also been

proved and numerically demonstrated.9,10 For example, if k� r, the rate of convergence at the inter-

element nodes is O(h2k) for both u and s.

Let us now consider the direct extension of this formulation to the steady convection±diffusion

problem in two- or three-dimensional domains O de®ned by

ÿH � �aHu� ÿ b � Hu� cu � f in O; �7�
with u� 0 on @O. The ®rst-order system is then, similarly,

H � s� b � aÿ1s� cu � f ; �8�
s� aHu � 0 �9�

and the least-squares functional becomes

I �u;s� �
�
O
��H � s� b � aÿ1s� cuÿ f �2 � �s� aHu�2�dxdy: �10�

Error estimates for this formulation are given in References 5 and 11 (see also Reference 12). An

improved result for the ¯ux can be obtained by adding an additional curl relation

H� �aÿ1s� � 0 in O �11�
and boundary relation

n ^ �aÿ1s� � 0 in @O; �12�
where n is the unit outward normal and ^ denotes the exterior product. The effect of these additional

terms is to produce a modi®ed bilinear form that is coercive on a `better' space and we get improved

global estimates11,13 of the form (for k� r)

kuÿ uhk0 � ksÿ shko 4Chk�1�kukk�1 � kskk�1�: �13�
Numerical experiments are presented in Tables I and II for problem (8), (9) with

a � � y2 � 1�; b � �x; y�; c � �5x� y�2 � 1 and exact solution u � exp�2x2 � 2y2� on a square

domain with corners (0, ÿ1), (1, 0), (0, 1) and (ÿ1, 0). It is evident from Table II that the numerical

rates of convergence in the usual norms are suboptimal for the case where the additional curl and

boundary relations are omitted.

The least-squares mixed system conditioning depends asymptotically on the mesh size in a manner

similar to the Galerkin method. As the mesh is re®ned, the condition number deteriorates with order
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O(hÿ2). In Reference 6 we investigate the use of a block ILU scheme from Reference 14 as a

preconditioner for conjugate gradient solution of the symmetric positive block least-squares system.

This scheme can also be viewed as a two-grid multigrid scheme applied to the associated reduced

Schur matrix with restriction to a lower-dimensional space of ®xed size m. The performance of this

preconditioning strategy is indicated in Table III for the above-mentioned test problem. In the table,

m is the block size for the restriction operator to the lower-dimensional space and h� 1=n is the mesh

size. The large block sizes require progressively more CPU time per iteration as m increases but

fewer iterations to converge and are more ef®cient. If the curl relation and ¯ux boundary relation are

removed, the number of iterations increases. We also applied this preconditioner to problems with

discontinuous diffusion coef®cients. The number of iterations appears to be independent of the jump

in the diffusion coef®cient when proper weight is used in the curl term (see also References 6 and 15).

Estimate (13) suggests that we need to have a smooth solution to our problem in order to obtain

optimal rates of convergence. In general, we cannot expect such regularity globally. However, we

have suf®cient smoothness in regions away from the sources of singularity. Let O0 and O1 be

Table I. Convergence rates for case with curl term and sh boundary condition

Norm k � 1 k � 1 k � 2 k � 2 k � 3
r � 1 r � 2 r � 2 r � 3 r � 3

kuÿ uhko 1�85 2�02 3�31 3�01 4�24
juÿ uhj1 1�08 1�01 2�16 2�00 3�14
ksÿ shk0 1�91 2�10 3�01 3�89 3�99
jsÿ shj1 1�00 1�93 1�98 2�94 2�98
kH � �sÿ sh�k0 1�01 1�95 1�98 2�95 2�97

Table II. Convergence rates for case without curl term and sh boundary
condition

Norm k � 1 k � 1 k � 2 k � 2 k � 3
r � 1 r � 2 r � 2 r � 3 r � 3

kuÿ uhko 1�86 2�02 3�31 3�01 4�21
juÿ uhj1 1�08 1�01 2�14 2�00 3�12
ksÿ shk0 1�07 1�73 1�95 2�36 3�11
jsÿ shj1 0�54 0�65 0�94 1�33 2�25
kH � �sÿ sh�k0 1�00 2�02 1�98 2�88 2�97

Table III. Number of iterations for the block preconditioner

n m � 1 m � 2 m � 4 m � 8

80 99 76 55 36
40 52 40 29 19
20 27 21 16 11
10 15 12 9 7
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compact subdomains of O with smooth boundaries. Then the following interior estimate holds (for

k� r):

kuÿ uhk0;O0
� ksÿ shk0;O0

4Ch2�kuÿ uhk1;O1
� ksÿ shk1;O1

�
� C�kuÿ uhk1;O1

� ksÿ shk1;O1
� � Chk�1�kukk�1;O1

� kskk�1;O1
�:

See Reference 16 for other interior estimates, including the case of differing polynomial degrees. The

above error estimate indicates that the rate of convergence on O0 is controlled by the error in a

weaker norm on O1.

3. ERROR ESTIMATOR

One of the main advantages of the least-squares mixed formulation is that we can calculate exactly

the error in the norm de®ned by the bilinear form. Moreover, we can calculate exactly the error in this

`energy' norm not only globally but also on each ®nite element.

The discrete variational problem which corresponds to problem (8), (9) is

a�uh;sh; vh; qh� � � f ;H � qh � b � aÿ1qh � cvh� �14�

for all vh 2 Vh and qh 2Wh, where Vh and Wh are the ®nite element spaces for uh and sh,

respectively and

a�uh;sh; vh; qh� � �H � sh � b � aÿ1sh � cuh;H � qh � b � aÿ1qh � cvh� � �sh � aHuh; qh � aHvh�:

For the error in the energy norm we have

a�uÿuh;sÿ sh; uÿ uh;sÿ sh�
� �H � �sÿ sh� � b � aÿ1�sÿ sh� � c�uÿ uh�;

H � �sÿ sh� � b � aÿ1�sÿ sh� � c�uÿ uh��
� �sÿ sh � aH�uÿ uh�;sÿ sh � aH�uÿ uh��

� � f ÿ H � sh ÿ b � aÿ1sh ÿ cuh; f ÿ H � sh ÿ b � aÿ1sh ÿ cuh�
� �sh � aHuh;sh � aHuh�;

�15�

where (8) and (9) were used at the last step. Since the right-hand side of (15) involves only uh and sh,

we can calculate exactly the error in the `energy' norm. The same argument as in (15) may be applied

to any element of the ®nite element partition, i.e. we have an exact error estimator locally on each

®nite element. We tested an h-adaptive procedure based on this estimator. The numerical experiments

indicate that optimal rates of convergence with respect to the number of degrees of freedom can be

achieved.17

4. VISCOUS FLOW

Let us begin with the stationary Navier±Stokes equations in primitive variable form:

u � Hu� 1

r
Hpÿ nDu � f ; H � u � 0: �16�
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For two-dimensional ¯ow we may introduce the scalar vorticity ®eld z to recast (16) as the ®rst-order

system

u
@u

@x
� v

@u

@y
� 1

r
@p

@x
� n

@z
@y
� f ; u

@v
@x
� v

@v
@y
� 1

r
@p

@y
ÿ n

@z
@x
� g;

zÿ @v
@x
� @u
@y
� 0;

@u

@x
� @v
@y
� 0;

�17�

with appropriate boundary conditions speci®ed on @O.

Introducing the residual vector r of equations (17), the least-squares functional for admissible u, v,

p and z follows as

I �
�
O

rTrdxdy: �18�

Taking variations leads to a weak statement for the least-squares formulation and introducing the

®nite element spaces we obtain a non-linear algebraic system to be solved for the nodal solution

values. For the case of slow ¯ow, the inertial terms u �Hu in (16) and (17) are negligible and the

problem simpli®es to Stokes ¯ow. Then the system (17) is linear and the bilinear functional resulting

from (18) is symmetric positive.

In turn, this implies that the usual consistency conditions associated with the Galerkin approach do

not have to be enforced in the least-squares mixed formulation. For example, it is well known that the

mixed Galerkin ®nite element method for the primitive variable Navier±Stokes formulation is not

stable for certain equal-order basis combinations, `locking' to uh� 0 occurs for the linear velocity,

constant pressure triangle and spurious pressure modes can occur for other choices of bases.18 These

restrictions on the bases do not apply to the least-squares mixed ®nite element formulation.

Consequently, in the results presented later we use equal-order bases for all variables for convenience

(although other choices are possible and may be preferable for other reasons such as computational

ef®ciency or the requirements of a speci®c application).

We would also like to emphasize that there are implicit questions of scaling that arise in least-

squares formulations. For instance, different physical parameters appear in different equations and

scale different terms of an equation. Hence the respective residuals in the least-squares functional

(18) may be differently scaled. Since the approximation minimizes I on the subspace and I is a sum of

equation residuals, the accuracy of the approximation to, for instance, mass balance versus

momentum balance may be dif®cult. This can also have some bearing on numerical scaling of the

resulting algebraic system. To illustrate this point, note that the ®rst pair of equations in (17) can be

scaled by nÿ1 to rewrite the momentum equations with the inertial terms scaled by an effective

Reynolds number Re� nÿ1. Then, if the velocity components are scaled to be O(1) and the ¯ow is

slow so that Re< 1, the coef®cients in the scaled equation are less than unity and all residuals in the

functional I will have coef®cients of similar order. On the other hand, the form shown in (17) might

fare better numerically as the Reynolds number increases. Of course, if the mesh size is suf®ciently

small, either formulation would give accurate results, but from a practical standpoint we seek

accurate results on the coarsest admissible grid. This issue does raise the question of weighting

individual residuals in I differently. This is a topic of continuing study.

Numerical results for the formulation in (17) have been computed for the familiar lid-driven cavity

problem on a 25625 mesh using nine-node biquadratic elements for all four solution variables. The

streamfunction contours computed from u and v are shown in Figure 1(a) and the vorticity contours in

Figure 1(b).

We remark that our ®rst calculations of viscous ¯ows date from around 1988 and appeared in

Reference 19. However, we have delayed communicating subsequent computations because the
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methods do exhibit some anomalous behaviour and warrant further study. For example, as suggested

above, scaling can be an issue and we have observed that the methods applied to (17) may not

demonstrate an adequate approximation to mass conservation for calculations on coarse grids at low

Re. Further details and supporting numerical studies are given in Reference 20. Other related results

are reported in References 21 and 22. However, using the alternative formulation at low Re has been

shown to generate approximations with better mass conservation properties.

There are other formulations of the viscous ¯ow problem that can be recast in a form suitable for

least-squares treatment. Here, for brevity, we will restrict our attention to the stress formulation

because of its broader applicability to generalized newtonian and viscoelastic ¯ow problems which

we also take up later. Let us ®rst consider the stress formulation for stationary Navier±Stokes. Instead

of (17) we now have

r u
@u

@x
� v

@u

@y

� �
� @p
@x
ÿ @txx

@x
� @txy

@y

� �
� f ;

r u
@v
@x
� v

@v
@y

� �
� @p
@y
ÿ @txy

@x
� @tyy

@y

� �
� g;

@u

@x
� @v
@y
� 0;

�19�

with the constitutive (Stokes) relation

tij ÿ Z�ui; j � uj;i� � 0 �20�
for the stress tensor to complete a full system of six equations for u, v, p, txx, txy and tyy. Note that we

have replaced the kinematic viscosity n with the viscosity Z. Generalized Newtonian ¯uids such as

power-law and Bingham constitutive models can be treated by appropriately specifying Z in (20). For

example, in the power-law model we set

Z � K _g*�nÿ1�; �21�
where the constants K and n are referred to as the consistency parameter and power-law index

respectively and the scalar quantity _g* is the second invariant of the shear rate tensor _gij �
�ui; j � uj;i�.

Similarly, for the Bingham model we have

Z � Z0 � t0=_g* when 1
2

tr�t2�5t2
0;

_g � 0 when 1
2

tr�t2� < t2
0;

�22�

Figure 1. Solutions from velocity±pressure±vorticity scheme (Re� 100)
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where Z0 is the Newtonian viscosity and the yield stress of the ¯uid material is denoted by t0.

Expanding each of the six ®elds (u, v, p, txx, txy and tyy) in the ®nite element basis, substituting in

the least-squares functional for (19) and (20) and minimizing yields a non-linear coupled system for

the nodal velocity, pressure and stress components. The large number of degrees of freedom

obviously implies that the resulting algebraic systems are large and these problems are both dif®cult

and computationally intensive. However, this is true for both the Galerkin and least-squares

formulations. The fact that the LBB condition must be enforced in the Galerkin ®nite element method

is a key consideration now since it implies that the stress ®eld approximation must be in a higher-

dimensional subspace.23 This is not the case with the least-squares mixed method, but scaling is still

an issue.

We have computed the equal-order bilinear and biquadratic approximations and higher-p

approximate solutions for several test problems and different choices of ¯uid types. Contours of the

shear stress component txy and vorticity for a Newtonian ¯uid (n� 1) and the cavity problem at

Re� 1 with polynomial degree two on a 20620 uniform mesh are given in Figure 2(a).

Numerical results with an equal-order basis of polynomial degree six on a 565 mesh for a power-

law ¯uid with index n� 0�85 are given in Figure 2(b). An example of a Bingham ¯uid on a non-

uniform mesh with variable local polynomial orders is shown in Figure 3(b). As the Bingham number

Bn� t0L=Zvo is increased, more and more of the ¯uid in the cavity behaves like a solid and the ¯ow is

increasingly con®ned to near the moving wall. Various scaling issues related to least-squares

minimization for Bingham ¯uids are discussed in Reference 24.

Finally, to complete the treatment, we include a brief description and numerical results for a steady

viscoelastic ¯ow problem following our earlier study in Reference 25. More speci®cally, we consider

the stationary ¯ow of an upper-convected Maxwell ¯uid as described by (19) and with the

constitutive relationship

txx 1ÿ 2We
@u

@x

� �
�We u

@txx

@x
� v

@txx

@y
ÿ 2txy

@u

@y

� �
ÿ 2

@u

@x
� 0;

tyy 1ÿ 2We
@v
@y

� �
�We u

@tyy

@x
� v

@tyy

@y
ÿ 2txy

@v
@x

� �
ÿ 2

@v
@y
� 0;

We u
@txy

@x
� v

@txy

@y
ÿ txx

@v
@x
ÿ tyy

@u

@y

� �
� txy ÿ

@u

@y
ÿ @v
@x
� 0;

Figure 2. Contours of txy for lid-driven cavity problem with (a) Newtonian (20620 mesh of biquadratic elements) and
(b) power-law (565 mesh of elements with polynomial degree six) ¯uids
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where We� lU=L is the Weissenberg number. Details of the least-squares system structure are given

in Reference 25. Suf®ce it to say that the system is solved by Newton iteration in conjunction with a

line search procedure and incremental continuation in Weissenberg number. As a test case we

considered the ¯ow between parallel plates with a fully developed inlet pro®le at x� 0, stick±slip

discontinuity at x� 4 and uniform normal stress out¯ow condition at x� 64. The calculation was

made using elements of polynomial degree seven on a mesh that was strongly graded towards the

singularity. Results in Figure 4 for the stress component txx on the wall at We� 0�6 and 1�2 indicate

the pronounced nature of the singularity at the stick±slip point x� 4. We remark here that

computations with low-degree elements on moderate meshes have large mass balance errors that are

related to the large residuals near the singular point. A graded mesh with high-polynomial-degree

elements circumvents this problem. The issue of mass conservation at the stick±slip discontinuity is

taken up in a related paper.26

5. CONCLUDING REMARKS

While there are a growing number of recent studies exploring the least-squares FEM, several

important issues concerning questions related to scaling, the use of different forms of the equations,

weighting residual contributions for corresponding norms and the effect of h- or p-re®nement warrant

further study. The effect of weighting the terms using a mesh-dependent factor is considered in

Figure 3. Velocity ®eld for (a) Newtonian and (b) Bingham ¯uids

Figure 4. Wall stress distribution
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Reference 27 but is not conclusive. Related ideas involving the use of an Hÿ1 norm are also being

studied.28 There have also been a number of numerical studies including those in References 21 and

29 for viscous ¯ows, but none of these answers the points raised above or gives as comprehensive a

set of studies involving the formulations as we provide here. We remark that we have also considered

the time-dependent problem for both wave propagation30,31 and ¯ow.32,33 but for brevity have not

included any of this work in the present study. In closing, we remark that little has yet been done with

respect to the development of adaptive least-squares methods with residual-based error indicators

(see References 17 and 34 for work in this direction).
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